服务器

质量为本、客户为根、勇于拼搏、务实创新

< 返回服务器列表

2023AI大模型角逐下的IDC市场

发布时间:2024-08-02

不管是ChatGPT⑷或文心一言,本质都是算法大模型带起来的AI军备比赛,而除这些大公司,大模型的出现还有望带动AI服务器需求爆发。CPU、内部存储和外部存储作为服务器的核心部件,受益于大模型的井喷发展,板块也会得到进一步关注。本文就重点介绍AI大模型服务器。


所谓“大模型”,通常是在无标注的大数据集上,采取自监督学习的方法进行训练。以后在其他场景的利用中,开发者只需要对模型进行微调,或采取少许数据进行二次训练,就能够满足新利用场景的需要。

一、大模型的基础:算力场景向AI升级,CPU+GPU是核心

服务器随着场景需求经历通用服务器-云服务器-边沿服务器-AI服务器四种模式,AI服务器采取GPU增强其并行计算能力;

AI大模型服务器按利用场景可分为训练和推理,训练对芯片算力的要求更高,根据IDC,随着大模型的利用,2025年推理算力需求占比有望提升至60.8%;

AI大模型服务器按芯片类型可分为CPU+GPU、CPU+FPGA、CPU+ASIC等组合情势,CPU+GPU是目前国内的主要选择(占比91.9%);

AI大模型服务器的本钱主要来自CPU、GPU等芯片,占比25%⑺0%不等,对训练型服务器其80%以上的本钱来源于CPU和GPU。

大模型是人工智能发展的必定趋势,大模型是辅助式人工智能向通用性人工智能转变的坚实底座,能够极大提升生产力。通过学习一种特点和规则,搭建出高效力的通用模型,在这个基础上进行微调,就能够利用在区分场景。


在过去,大家都是各自研发自家模型,单一AI利用场景需要多个模型支持,每一个模型都需要算法开发、数据处理、模型训练等进程,耗费了大量资源。在AI时期,这样的低效发展明显不是谷歌、微软、百度等公司希望的。

现在,大模型实现了标准化AI研发范式,能够以一种简单的方式进行范围化生产,既能下降自家的AI开发门坎,做到“低本钱”和“高效力”,还可以够将这一模型利用在有定制化需求的企业身上。

所以,基于这个基础,大模型的开发成为互联网发展的必定结果。而这个结果的底层技术支持,就是算力。算力是打造大模型生态的必备基础,其中,服务器作为算力的载体,无疑是大模型发展的重要支持。而这些都会在文心一言、在ChatGPT中发挥举足轻重的作用,帮助这些大模型实现从输入到输出。


二、ChatGPT等大模型训练和推理需求激增驱动AI服务器市场高速增长

据预测,ChatGPT⑷参数量最高达15000亿个,由于参数量与算力需求间存在正比关系,所以可推算GPT⑷算力需求最高到达31271PFlop/s-day。随着国内外厂商加速布局千亿级参数量的大模型,训练需求有望进一步增长,叠加大模型落地利用带动推理需求高速增长,共同驱动算力革命并助推AI服务器市场及出货量高速增长。

服务器比普通计算机运行更快、负载更高、价格更贵,但内部结构与普通的计算机相差不大。服务器的架构,固然也会随负载量扩大而不断优化。现在的服务器架构,已从传统单一模式过渡到集群模式,再发展到有着广阔利用前景的散布式架构。

在散布式架构中,全部系统依照区分功能,拆分为多个单一功能的子模块,每一个模块被放到区分服务器中相互协作,共同组成服务器网络,服务器也是区块链利用的底层技术支持。

伴随利用需求不断扩大,区分架构服务器百花齐放。人工智能利用场景下的加速计算服务器,由于具有强大的计算能力,因此成为服务器中的核心驱动力。从最近的文心一言到ChatGPT⑷,AI场景下的加速计算服务器成为各家拼算力、拼模型的基础,AI服务器的价值正逐步凸显。

AI服务器区分于通用服务器,作为算力载体,其更专精于海量数据处理和运算方面,可以为人工智能、深度学习、神经网络、大模型等场景提供广阔的动力源泉,并广泛利用于医学、材料、金融、科技等千行百业。在未来,AI服务器势必为数字经济时期提供发展的强大动力。


如果将当前的 ChatGPT 部署到谷歌进行的每次搜索中,需要 512820.51 台 A100 HGX 服务器和总共 4102568 个 A100 GPU,这些服务器和网络的总本钱仅资本支出就超过 1000 亿美元。在生成式AI大模型广阔的利用背景下,高算力服务器需求有望在中长线保持旺盛,支持其底层的交换机、服务器等数据中心算力基础设施亦将迎来新一轮高速增长。

TikTok千粉号购买平台:https://tiktokusername.com/